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Abstract 23 

Accurate long-term temperature and precipitation estimates at high spatial and temporal resolutions 24 

are vital for a wide variety of climatological studies. We have produced a new, publicly available, 25 

daily, gridded maximum temperature, minimum temperature, and precipitation dataset for China 26 

with a high spatial resolution of 1 km and over a long-term period (1961 to 2019). It has been named 27 

the HRLT and the dataset is publicly available at https://doi.org/10.1594/PANGAEA.941329 (Qin 28 

and Zhang, 2022). In this study, the daily gridded data were interpolated using comprehensive 29 

statistical analyses, which included machine learning, the generalized additive model, and thin plate 30 

splines. It is based on the 0.5° × 0.5° grid dataset from the China Meteorological Administration, 31 

together with covariates for elevation, aspect, slope, topographic wetness index, latitude, and 32 

longitude. The accuracy of the HRLT daily dataset was assessed using observation data from 33 

meteorological stations across China. The maximum and minimum temperature estimates were 34 

more accurate than the precipitation estimates. For maximum temperature, the mean absolute error 35 

(MAE), root mean square error (RMSE), Pearson’s correlation coefficient (Cor), coefficient of 36 

determination after adjustment (R2), and Nash-Sutcliffe modeling efficiency (NSE) were 1.07 ℃, 37 

1.62 ℃, 0.99, 0.98, and 0.98, respectively. For minimum temperature, the MAE, RMSE, Cor, R2, 38 

and NSE were 1.08 ℃, 1.53 ℃, 0.99, 0.99, and 0.99, respectively. For precipitation, the MAE, 39 

RMSE, Cor, R2, and NSE were 1.30 mm, 4.78 mm, 0.84, 0.71, and 0.70, respectively. The accuracy 40 

of the HRLT was compared to those of the other three existing datasets and its accuracy was either 41 

greater than the others, especially for precipitation, or comparable in accuracy, but with higher 42 

spatial resolution or over a longer time period. In summary, the HRLT dataset, which has a high 43 

spatial resolution, covers a longer period of time and has reliable accuracy, is suitable for future 44 
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environmental analyses, especially the effects of extreme weather.  45 

1 Introduction 46 

Climate change has led to an increase in the frequency and severity of extreme temperature 47 

and precipitation events (Myhre et al., 2019), and these events have affected vegetation growth (Xu 48 

et al., 2019), especially crop growth (Rao et al., 2015; Li et al., 2019b; Lu et al., 2018; Lobell et al., 49 

2011; Lesk et al., 2016). Thus, long-term and accurate daily maximum temperature, minimum 50 

temperature, and precipitation data are important when attempting to reveal the mechanism 51 

underlying the effects of extreme climate on plants, predicting disasters (such as drought, frost, and 52 

floods), and for agricultural and forestry management. Although the meteorological observation 53 

network makes better use of the data from meteorological stations (Merino et al., 2014; Yang et al., 54 

2014), there is a tradeoff between large spatial scale and the high density of stations in the 55 

meteorological observation network. Moreover, the installation and maintenance of meteorological 56 

stations are challenging in harsh areas (Hartl et al., 2020). Daily and gridded meteorological datasets 57 

are also essential inputs for many models related to terrestrial, hydrological, and ecological systems 58 

(Iizumi et al., 2017; Wang et al., 2018; Zhang et al., 2018; Lee et al., 2019). High-resolution, long-59 

term, and accurate gridded datasets can help improve the performance of these models. 60 

Researchers have previously used interpolation methods, such as inverse distance weighting, 61 

kriging, and regression analysis, to produce grid meteorological data (Brinckmann et al., 2016; 62 

Herrera et al., 2019; Schamm et al., 2014). However, the accuracy of these interpolation results is 63 

limited by the density of the meteorological stations. In recent years, artificial intelligence, machine 64 

learning methods, such as random forest (Chen et al., 2021; Sekulić et al., 2021); artificial neural 65 
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networks (Sadeghi et al., 2021), and support vector machines (He et al., 2021) have been gradually 66 

and widely applied to meteorological data estimation. Therefore, comprehensive statistical analyses 67 

using machine learning and traditional interpolation, such as thin-plate-smoothing splines, are 68 

feasible and reliable methods that can be used to estimate meteorological data. 69 

At present, only a few research institutes in China are developing meteorological datasets for 70 

temperature and precipitation with high spatial and temporal resolutions. Among them, Beijing 71 

Normal University has produced meteorological datasets for 1958–2010 with a resolution of 1 km, 72 

but the latest data is not available (Li et al., 2014). The China Meteorological Administration is also 73 

developing the CMA Land Data Assimilation System product (Shi et al., 2011) and Tsinghua 74 

University has published a driving dataset from 1979 to 2018 with a resolution of 0.1° over China 75 

(He et al., 2020). 76 

We present a new high-resolution daily gridded maximum temperature, minimum temperature, 77 

and precipitation dataset for China (HRLT) with a spatial resolution of 1 × 1 km for the period 1961 78 

to 2019. We created the HRLT dataset using comprehensive statistical analyses, which included 79 

machine learning, the generalized additive model and thin plate splines. It uses the 0.5° × 0.5° grid 80 

dataset from the China Meteorological Administration (CMA) as input data together with other 81 

covariates, including elevation, aspect, slope, topographic wetness index (TWI), latitude, and 82 

longitude. The dataset was created in three steps: (1) preparation of input data and covariates; (2) 83 

the creation of the gridded dataset using comprehensive statistical analyses; and (3) an evaluation 84 

of the accuracy of the gridded dataset and accuracy comparison with other three exiting products 85 

that use meteorological station data. 86 
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2 Data 87 

2.1 The CMA dataset and meteorological stations data 88 

The CMA dataset, which includes the daily surface temperature 0.5° × 0.5° grid dataset  89 

(http://101.200.76.197/data/cdcdetail/dataCode/SURF_CLI_CHN_TEM_DAY_GRID_0.5.html) 90 

and the daily precipitation 0.5° × 0.5° grid dataset for China (V2.0) 91 

(http://101.200.76.197/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html), 92 

was obtained from the China Meteorological Data Service Centre and was used as the basic input 93 

data. The researchers also reported daily precipitation 0.5° × 0.5° grid dataset during 1961-2010 94 

from CAM dataset (Zhao and Zhu, 2015). The daily dataset of surface climatological data for China 95 

(V3.0) (http://101.200.76.197/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html), 96 

which includes 699 meteorological stations, was also obtained from the China Meteorological Data 97 

Service Centre and was used to evaluate the new dataset (Fig. 1). 98 

2.2 Topographic data 99 

The basic topographic data, including elevation, flow direction, and flow accumulation with a 100 

30 second (approximately 1 km) resolution, were obtained from the HydroSHEDS database. More 101 

detailed information can be found at these links: http://www.worldwildlife.org/hydrosheds for 102 

general information and http://hydrosheds.cr.usgs.gov for data download and technical 103 

information. The “Aspect” and “Slope” option of the Spatial Analyst Tools in ArcGIS10.6 were 104 

used to calculate aspect and slope. The specific catchment area (SCA) was calculated based on 105 

flow direction and flow accumulation. The TWI is formulated as TWI = ln(SCA / tan(Slope)). 106 
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2.3 Other datasets 107 

Three temperature and precipitation products with daily resolutions were evaluated using 108 

observed meteorological stations data and the evaluation results were compared to the HRLT 109 

dataset in this study. The China Meteorological Administration Land Data Assimilation System 110 

(CLDAS) version 2 dataset was provided by the China Meteorological Data Service Centre 111 

(https://data.cma.cn/) for 2017 to 2019 with a 0.0625° (approximately 7.5 km) spatial resolution 112 

and a 1 day temporal resolution. The China Meteorological Forcing Dataset (CMFD) (He et al., 113 

2020; Yang and He, 2019) was obtained from the National Tibetan Plateau Third Pole 114 

Environment Data Center (https://data.tpdc.ac.cn/) for 1979 to 2018 with a spatial resolution of 115 

0.1° (approximately 12 km) and a temporal resolution of 1 day. The historical dataset relating to 116 

the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a) was obtained from the web 117 

(https://data.isimip.org/) for 1961 to 2016 with a spatial resolution of 0.5° (approximately 60 km) 118 

and a temporal resolution of 1 day. The daily maximum temperature, minimum temperature, and 119 

precipitation data in the CLDAS and ISIMIP3a were used for evaluation and comparison. The 120 

daily average temperature and precipitation data from the CMFD was also used for evaluation and 121 

comparison. 122 

3 Methods 123 

3.1 The input data and covariates 124 

In this study, the input data (dependent variable) was the daily 0.5° × 0.5° CMA dataset, which 125 

includes daily maximum temperature, minimum temperature and precipitation. Other covariates 126 

(independent variables) included elevation, aspect, slope, TWI (with a spatial resolution of 1 km), 127 
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latitude, and longitude.  128 

3.2 The interpolation scheme 129 

As shown in Figure 2, the different combinations of six algorithms, which are the boosted 130 

regression trees (BRT), random forests (RF), neural networks (NN), multivariate adaptive 131 

regression splines (MAR), support vector machines (SVM) and the generalized additive model 132 

(GAM), to predict the input data. Firstly, through k-fold cross validation (k = 10), the input data was 133 

was randomly divided into 10 sub-training datasets and sub-testing datasets. Each algorithm runs in 134 

a loop through all the sub-training sets and calculates the residuals from the sub-testing sets. The 135 

residuals obtained in each loop are retained. The residual of each algorithm is assigned a weight of 136 

0-1 and summed up, and the ensemble of models that has the lowest residual sum is chosen. After 137 

determining the best ensemble of models, surface results were interpolated using the best ensemble 138 

of models, input data and covariates. The thin-plate-smoothing splines (TPS) is used to correct 139 

residual error from the ensemble of models. Therefore, residuals of the ensemble are calculated from 140 

the input data and these values are interpolated using TPS. Surface results from the ensemble add 141 

residuals from the thin-plate-smoothing splines to get the surface result of final model. Compare R2 142 

of surface result from the ensemble and final model, and retain the surface result with higher R2. 143 

3.3 The methods 144 

The introduction of individual algorithm (method) and the implementations for model training 145 

(R packages and functions) of that is as follows. After the model training, the function ‘predict’ in 146 

R package ‘raster’ used to spatial interpolation for BRT, RF, NN, MAR, SVM and GAM model, and 147 

the function ‘interpolate’ in R package ‘raster’ used to spatial interpolation for TPS. More details on 148 
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R packages and functions could refer the web (https://www.rdocumentation.org/). 149 

3.3.1 The BRT model 150 

As a powerful tool for exploratory regression analysis, BRT is a combination of two techniques: 151 

decision trees and boosting method (Elith et al., 2008). The BRT can automatically detect the best 152 

fit and is robust to missing values and outliers, therefore, BRT now widely used in Remote sensing, 153 

species distribution and meteorological interpolation (Pouteau et al., 2011; Appelhans et al., 2015; 154 

Froeschke and Froeschke, 2011). There are two important parameters in BRT, (1) the tree 155 

complexity (TC): this controls the number of splits in each tree. (2) learning rate (LR): this 156 

determines the contribution of each tree to the growth model. The smaller value of LR, the more 157 

trees will be built. These two parameters together determine the number of trees required for the 158 

best prediction in order to find the combination of parameters that leads to the least prediction error. 159 

The function ‘gbm.step’ in R package ‘dismo’ for the BRT implementation. The the tree complexity 160 

was set at 5, the learning rate was set at 0.001. In addition, the ‘bag.fraction’, which specifies the 161 

proportion of data to be selected at each step, was set at 0.5 and other parameters are default values 162 

in ‘gbm.step’. 163 

3.3.2 The RF model 164 

Like BRT, the main technology of RF also includes decision trees, however, the way in which 165 

the data to build the trees is selected is different (boosting method for BRT, bagging method for RF). 166 

For regression analysis, the bagging method, which take a random subset of all data for each new 167 

tree that is built, makes the final output based on average of multiple trees (Breiman, 2001). As one 168 

of the most accurate algorithms, RF has been used widely for predicting spatio-temporal variables, 169 

such as temperature and precipitation (He et al., 2016; Mital et al., 2020; Webb et al., 2016). The 170 
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function ‘randomForest’ in R package ‘randomForest’ for the RF implementation. The importance 171 

was set TRUE, and other parameters are default values in ‘randomForest’. 172 

3.3.3 The NN model 173 

As a powerful set of tools for solving problems in pattern recognition, data processing, and 174 

non-linear control (Bishop, 1994), the NN consists of a large number of nodes and connections and 175 

it includes input layer, hidden layer and output layer (Lek and Guégan, 1999). Information from 176 

each node in the input layer is fed to the hidden layer. Connections between input layer nodes and 177 

hidden layer nodes can all be given specific weights according to their importance. The connection 178 

between the hidden layer and the output layer is also weighted, so the output is the result of the 179 

weighted sum of the hidden nodes. Information transfer between hidden layer and output layer 180 

through transfer function. Since the 1980s, the NN has been used in a number of fields, such as 181 

prediction for meteorological variables (Snell et al., 2000; Lek and Guégan, 1999; Tang et al., 2020). 182 

The function ‘nnet’ in R package ‘nnet’ for the NN implementation. The number of units in the 183 

hidden layer (size) was set 10, the transfer function is linear for the output layer (linout was set 184 

TRUE), the maximum number of iterations (maxit) was set 10000, and other parameters are default 185 

values in ‘nnet’. 186 

3.3.4 The MAR model 187 

The MAR is an extension of linear model, which can build multiple linear regression models 188 

within the range of predictive variable values by partitioning data (Friedman, 1991; Friedman and 189 

Roosen, 1995). The MAR consists of two steps: firstly, it creates a set of so-called basis functions. 190 

In this process, the range of predictive variable values is divided into several groups. For each group, 191 

separate linear regression was modeled. Secondly, MAR estimates a least square model with its 192 
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basis function as the independent variable. Overfitting is avoided by iterating to remove the basis 193 

functions that contribute least to the model fitting. The MAR works well with a large number of 194 

predictor variables, automatically detects interactions between variables and is robust to outliers, 195 

therefore, studies has done on downscaling or predicting meteorological data using MAR (Panda et 196 

al., 2022; Li et al., 2019a; Zawadzka et al., 2020). The function ‘earth’ in R package ‘earth’ for the 197 

MAR implementation. Use linear model to estimate standard deviation as a function of the predicted 198 

response (varmod.method = ‘lm’). The nfold was set 10, the ncross was set 30, and other parameters 199 

are default values in ‘earth’. 200 

3.3.5 The SVM model 201 

The SVM is also one of the machine learning supervised algorithms and mainly deals with the 202 

ideas of classification and regression (Vapnik, 1999; Vapnik, 1991; Brereton and Lloyd, 2010). The 203 

SVM is well supported by mathematical theory and can use kernel tricks to efficiently process non-204 

linear data. With the development of SVM, it also has been widely used in the regression and 205 

prediction of meteorological variables (Belaid and Mellit, 2016; Chen et al., 2010; Tripathi et al., 206 

2006). In this study, the function ‘ksvm’ in R package ‘kernlab’ for the SVM implementation and 207 

all parameters are default values in ‘ksvm’.  208 

3.3.6 The GAM model 209 

The GAM is an extension of the generalized linear model (GLM). Like GLM, GAM consists 210 

of three important components: the probability distribution of the dependent variable, the linear 211 

predictor and the link function, however, in GAM, the coefficient of the independent variable in the 212 

linear is replaced by a sum of smooth functions (Hastie and Tibshirani, 2017; Liu, 2008). Because 213 

the GAM can deal with nonlinear and non-monotone relationships between dependent and 214 
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independent variables, it has been used to predict and interpolate meteorological data (Hjort et al., 215 

2016; Burnett and Anderson, 2019; Aalto et al., 2013). The function ‘gam’ in R package ‘mgcv’ for 216 

the GAM implementation and all parameters are default values in ‘gam’.  217 

3.3.7 The TPS method 218 

As a traditional interpolation method, the TPS has been widely used to spatially interpolate 219 

surface climate data (Gong et al., 2022; Hancock and Hutchinson, 2006; Risk and James, 2022). In 220 

this study, it used to correct residual error from the ensemble of models. The function ‘Tps’ in R 221 

package ‘fields’ for the TPS implementation. The matrix of independent variables consists latitude 222 

and longitude, the vector of dependent variables is residual error in the combinations of above 223 

algorithms, and other parameters are default values in ‘Tps’. 224 

3.4 The interpolation implementation 225 

A complete operation was constructed per day per variable, so there were 64647 operations 226 

(21549 days × 3 variables) from January 1, 1961 to December 31, 2019 for maximum temperature, 227 

minimum temperature and precipitation. A complete operation for a day per variable requires a 228 

Central Processing Unit core, 18 G of operating memory, and 2 hours of time. In order to shorten 229 

the running time, we carried out parallel computing on a supercomputer platform. Spatial 230 

interpolation work was executed by R version 4.0.2 (R Core Team, 2018) and the R package 231 

"machisplin" (Brown, 2019) was referenced to achieve it. 232 

3.5 Evaluation metrics  233 

The mean absolute error (MAE), root mean square error (RMSE), Pearson’s correlation 234 

coefficient (Cor), coefficient of determination after adjustment (R2), and Nash-Sutcliffe modeling 235 
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efficiency (NSE) were used to evaluate the interpolation results. Pearson’s correlation coefficient 236 

was used to evaluate the correlation between the simulated and observed values and the other 237 

metrics are defined separately as follows: 238 

 
𝑀𝐴𝐸 =

1

𝑛
∑ | 𝑆𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 
(1) 

 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑( 𝑆𝑖 − 𝑂𝑖  )

2

𝑛

𝑖=1

 
(2) 

 𝑅2 = 1 − (1 −
∑ ( 𝑆𝑖 − 𝑂̅ )2𝑛

𝑖=1

∑ ( 𝑂𝑖 − 𝑂̅ )2𝑛
𝑖=1

)
(𝑛 − 1)

(𝑛 − 𝑘 − 1)
 (3) 

 𝑁𝑆𝐸 = 1 −
∑ ( 𝑆𝑖 − 𝑂𝑖  )2𝑛

𝑖=1

∑ ( 𝑂𝑖 − 𝑂̅ )2𝑛
𝑖=1

 (4) 

where 𝑆𝑖  and 𝑂𝑖  are the model predicted and the experimentally observed values, respectively; 239 

𝑂̅ is the mean of the observed values; 𝑛 is the number of observations; and 𝑘 is the value of the 240 

independent variable. High Cor, R2, and NSE values, and small RMSE and MAE values indicate 241 

the strength of agreement between the predicted and observed values. 242 

4 Results and discussion 243 

4.1 Validation of temperature and precipitation 244 

The spatial interpolation results, including daily maximum temperature, minimum temperature, 245 

and precipitation, were validated using meteorological station data. The results of the validation 246 

showed that the daily maximum and minimum temperatures were highly accurate (Fig. 3 and Table 247 

1). The fitting slopes between the simulated and observed values were both close to 1 and the 248 

coefficients of determination after adjustment were 0.98 and 0.99, respectively, for daily maximum 249 

and minimum temperature (Figs. 3a, b). As shown in Table 1, the MAE was 1.07 ℃ and 1.08 ℃, 250 
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and the RMSE was 1.62 ℃ and 1.53 ℃ for daily maximum and minimum temperatures, respectively. 251 

In addition, the Cor and NSE values were close to 1 for both the daily maximum and minimum 252 

temperatures. Daily precipitation was less accurate than temperature with an 𝑅2 of 0.71 (Fig. 3c), 253 

which was mainly caused by underestimating high daily precipitation. However, most of the points 254 

were concentrated in the low daily precipitation section. Furthermore, the MAE and RMSE for daily 255 

precipitation were 1.30 mm and 4.78 mm, respectively; the Cor between the simulated and observed 256 

daily precipitation was 0.84, and the NSE was 0.70 (Table 1). 257 

The interpolation accuracy shows spatial differences (Fig. 4). The 𝑅2  values of the daily 258 

maximum and minimum temperatures in southwest China were less than 0.94 and lower than those 259 

for other regions (Figs. 4a, c). The mean absolute errors for the daily maximum and minimum 260 

temperature ranges at most meteorological stations were less than 1 ℃. However, there were some 261 

meteorological stations with mean absolute errors of more than 2 ℃ and these were evenly 262 

distributed across China (Figs. 4b, d). The R2 value for daily precipitation at most meteorological 263 

stations was greater than 0.7 and the MAE decreased from south to north across China (Figs. 4e, f). 264 

The meteorological stations were divided into the middle and lower reaches of the Yangtze 265 

River (MLYR), North China (NC), Northeast China (NEC), Northwest China (NWC), South China 266 

(SC), and Southwest China (SWC) (Fig. 1) according to their diverse geographic and climatic 267 

conditions and administrative areas. The density distribution curve trend for the simulated value and 268 

the observed value was always similar for daily maximum temperature, minimum temperature, and 269 

precipitation in the six regions. The daily maximum and minimum temperatures were all 270 

underestimated in the MLYR, NEC, NWC, SC, and SWC, and the daily minimum temperatures 271 
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were all underestimated in the MLYR, NWC, SC, and SWC (Fig. 5). For both daily maximum and 272 

minimum temperatures, the lowest difference between the simulated and observed average values 273 

occurred in NEC, while the greatest difference occurred in SWC (Fig. 5). Except in the NWC region, 274 

the simulated average for daily precipitation was lower than the observed average in the other 275 

regions. The largest difference between simulated and observed averages for daily precipitation 276 

occurred in the SC region, with a value of 0.5 mm (Fig. 5). 277 

Figure 6 shows that the average diurnal variation values for daily temperature and precipitation 278 

based on the meteorological station data were almost the same as our estimations. Compared to the 279 

observations from the meteorological stations, the average values for daily maximum temperature 280 

decreased from 17.79 ℃ to 17.44 ℃ (1.9%) and the average values for daily minimum temperature 281 

decreased from 7.24 ℃ to 6.94 ℃ (4.1%) after interpolation, between 1961 and 2019 (Figs. 6a, b). 282 

The maximum values for daily maximum and minimum temperature measured by the 283 

meteorological stations were 33.35 ℃ and 22.24 ℃, and the minimum values for those were −4.710 ℃ 284 

and −14.54 ℃, respectively. After interpolation, these corresponding values became 33.23 ℃ and 285 

22.45 ℃, −5.06 ℃ and −15.01 ℃, respectively. Compared to the observations from meteorological 286 

stations, the average values for daily precipitation decreased from 2.43 mm to 2.31 mm (4.9 %) after 287 

interpolation, between 1961 and 2019 (Fig. 6c). 288 

4.2 Temporal and spatial distributions of temperature and precipitation 289 

The results showed that detailed spatial changes in temperature and precipitation over time 290 

could be obtained (Fig. 7). For example, the increase in annual average values (both maximum 291 

temperature and minimum temperature) were obvious over the Tibetan Plateau from 1965 to 2010 292 
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(Figs. 7a–h, the d1 and h1 subregions). In addition, compared with other years, the annual average 293 

daily minimum temperature clearly increased in some areas of NWC (Figs. 7e–h, the h2 and h3 294 

subregions) and MLYR (Figs. 7e–h, the h4 subregion) in 2010. The most significant annual 295 

precipitation changes occurred in NEC (Figs. 7i–l, the l1 subregion) between 1965 and 2010.  296 

The distributions of annual average daily maximum and minimum temperatures and annual 297 

precipitation across the six regions of China in 1965, 1980, 1995, and 2010 were analyzed (Fig. 8). 298 

Compared with other years, the areas with smaller values for annual average daily maximum 299 

temperature (less than 0) and annual average daily minimum temperature (less than −10) in SWC 300 

and NWC decreased in 2010 (Figs. 8a1, 8a2, 8b1, 8b2). These areas are mainly distributed on the 301 

Qinghai-Tibet Plateau, which has seen a large increase in temperature over the past few decades. 302 

The density distribution peak for the annual average daily maximum and minimum temperatures in 303 

NEC moved to the right from 1965 to 1995, but moved to the left in 2010 (Figs. 8a3, 8b3). The 304 

mean annual average daily minimum temperature in 2010 was higher in the MLYR, NC, and SC 305 

than in the other three years (Figs. 8b4–6). There was an increase in mean annual precipitation in 306 

the northern part of China over the period 1965–2010 (Figs. 8c2–4). It increased from 335 mm to 307 

415 mm across NWC (Fig. 8c2), from 487 mm to 593 mm across NEC (Fig. 8c3), and from 531 308 

mm to 654 mm across NC (Fig. 8c4). In the MLYR, there were more areas with annual precipitation 309 

of less than 1000 mm, and areas with an annual precipitation of more than 2000 mm increased in 310 

1995 and 2010 compared 1965 and 1980 (Fig. 8c5). Similarly, compared with other years, there 311 

were more areas with annual precipitation of less than 1000 mm and more than 2000 mm in SC in 312 

2010 (Fig. 8c6). 313 
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4.3 Accuracy comparison with other products 314 

 The performances of the CMFD, CLDAS and ISIMIP3a generated daily temperatures and 315 

precipitations were evaluated against observations from all the meteorological stations and 316 

compared their performance with that of our dataset (Figs. 9–11; Tables 2–4). The fitting slopes 317 

between the simulated and observed daily temperature values were always close to 1 for all datasets 318 

(Figs. 9a–c; Figs. 10a–d; Figs. 11a–d). The R2  for the CMFD daily average temperature was 319 

slightly smaller than that for daily minimum temperature in our dataset (Figs. 9b, c), but was equal 320 

to our data set for daily maximum temperature (Figs. 9a, c). The Cor and NSE for the CMFD daily 321 

average temperature were also similar to our estimated daily maximum and minimum temperatures 322 

(Table 2). By contrast, the MAE and RMSE for the CMFD daily average temperature were 1.12 ℃ 323 

and 1.64 ℃, respectively, which were greater than for our estimated daily maximum and minimum 324 

temperatures (Table 2). The MAEs of daily maximum and minimum temperature for our dataset 325 

were 1.07 ℃ and 1.08 ℃ respectively; and the RMSEs of daily maximum and minimum 326 

temperature for our dataset were 1.63 ℃ and 1.54 ℃, respectively, between 1979 and 2018 (Table 327 

2). The R2, Cor, NSE, MAE, and RMSE for the CLDAS daily maximum temperatures were 0.91, 328 

0.95, 0.90, 2.54 ℃, and 3.63 ℃, respectively. Accuracy clearly improved for our daily maximum 329 

temperature, and the corresponding metrics were 0.98, 0.99, 0.98, 1.10 ℃, and 1.73 ℃ (Figs. 10a, 330 

b; Table 3). The MAE and RMSE for the CLDAS daily minimum temperature were clearly higher 331 

than our estimates for daily minimum temperature, and the R2, Cor, and NSE for daily minimum 332 

temperature in our dataset were higher than those for the CLDAS daily minimum temperature (Figs. 333 

10c, d; Table 3), thus indicating that the accuracy of our daily minimum temperature estimates was 334 

superior to that of the CLDAS daily minimum temperature product. Compared with the ISIMIP3a, 335 
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the R2, Cor, and NSE of daily maximum and minimum temperature in our dataset are always higher 336 

and the MAE and RMSE of these are always smaller (Figs. 11 a–d; Table 4). 337 

The R2 value for our estimated daily precipitation clearly improved compared to the other 338 

three datasets, especially the ISIMIP3a and CLDAS dataset (Figs. 9d, e; Figs. 10e, f; Figs. 11e, f). 339 

The Cor and NSE for the CMFD daily precipitation were obviously smaller than those for our 340 

dataset, and the RMSE for CMFD daily precipitation were greater than those for our dataset (Table 341 

2). During 2017–2019, the Cor, NSE, MAE, and RMSE for our estimated daily precipitation were 342 

0.84, 0.70, 1.42 mm, and 4.93 mm, respectively, and the corresponding values for the CLDAS daily 343 

precipitation changed to 0.58, 0.28, 2.36 mm, and 7.67 mm, respectively (Table 3). During 1961–344 

2016, the Cor, NSE, MAE, and RMSE for our estimated daily precipitation were 0.84, 0.70, 1.30 345 

mm, and 4.78 mm, respectively, and the corresponding values for the ISIMIP3a daily precipitation 346 

changed to 0.48, 0.14, 2.75 mm, and 8.10 mm, respectively (Table 4). Thus, the daily precipitation 347 

accuracy of our dataset was generally higher than that of CMFD, CLDAS and ISIMIP3a. 348 

5 Data availability 349 

The HRLT dataset includes daily maximum temperature, minimum temperature, and 350 

precipitation at a 1 km spatial resolution across China from January 1961 to December 2019. The 351 

datasets are publicly available in NetCDF format at https://doi.org/10.1594/PANGAEA.941329 352 

(Qin and Zhang, 2022). 353 

6 Conclusions  354 

The result of this study is a high-resolution (1 km) daily gridded maximum temperature, 355 

minimum temperature and precipitation dataset across China for the long-term (1961–2019) 356 
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(HRLT). The HRLT dataset shows an overall high correlation with the observations from 357 

meteorological stations for daily maximum and minimum temperatures (R2 was 0.98 and 0.99, 358 

respectively; Cor were both 0.99; NSE was 0.98 and 0.99, respectively) and the errors were smaller 359 

(MAE was 1.07 ℃ and 1.08 ℃, respectively; RMSE was 1.62 ℃ and 1.53 ℃, respectively). 360 

Although the HRLT dataset showed that the daily precipitation accuracy was lower than the daily 361 

temperature accuracy (R2, Cor, NSE, MAE, and RMSE were 0.71, 0.84, 0.70, 1.30 mm, and 4.78 362 

mm, respectively), the daily precipitation data in the HRLT dataset were more accurate and had a 363 

finer spatial resolution compared to the other three existing datasets (CMFD, CLDAS and 364 

ISIMIP3a). Furthermore, the accuracies for daily maximum and minimum temperatures and 365 

precipitation were lower in the southwestern part of China, probably because of the complex 366 

topography in that area compared to other areas. Calculation and interpolation by subregions may 367 

solve this problem in future studies. The use of satellite data as an input covariate in future studies 368 

will further improve the accuracy of the HRLT dataset, especially for precipitation. The HRLT 369 

dataset will help identify future extreme climatic events and can be also used to improve process-370 

based models for prediction, adaptation, and mitigation strategies. 371 
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Table 1 Summary of the accuracies for the HRLT datasets using data from the meteorological 

stations  

Variable MAE RMSE Cor NSE N Period 

Maximum temperature (℃) 1.07  1.62  0.99  0.98  14731830  1961–2019 

Minimum temperature (℃) 1.08  1.53  0.99  0.99  14730410  1961–2019 

Precipitation (mm)  1.30  4.78  0.84  0.70  14730380  1961–2019 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data.   
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Table 2 Comparison of accuracies for the HRLT and CMFD datasets using data from the 

meteorological stations  

Variable Dataset MAE RMSE Cor NSE N Period 

Maximum 

temperature (℃) 
HRLT 1.07  1.63  0.99  0.98  9969602  1979–2018 

Minimum 

temperature (℃) 
HRLT 1.08  1.54  0.99  0.99  9969602  1979–2018 

Average 

temperature (℃) 
CMFD 1.12  1.64  0.99  0.98  9969602  1979–2018 

Precipitation (mm) 
HRLT 1.30  4.73  0.84  0.71  9968784  1979–2018 

CMFD 1.30  5.85  0.75  0.55  9968784  1979–2018 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data.  
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Table 3 Comparison of accuracies for the HRLT and the CLDAS datasets using data from the 

meteorological stations  

Variable Dataset MAE RMSE Cor NSE N Period 

Maximum 

temperature (℃) 

HRLT 1.10  1.73  0.99  0.98  686653  2017–2019 

CLDAS 2.54  3.63  0.95  0.90  686653  2017–2019 
        

Minimum 

temperature (℃) 

HRLT 1.14  1.65  0.99  0.98  686653  2017–2019 

CLDAS 1.58  2.63  0.98  0.95  686653  2017–2019 
        

Precipitation 

(mm) 

HRLT 1.42  4.93  0.84  0.70  685936  2017–2019 

CLDAS 2.36  7.67  0.58  0.28  685936  2017–2019 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data.  
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Table 4 Comparison of accuracies for the HRLT and the ISIMP3a datasets using data from the 

meteorological stations  

Variable Dataset MAE RMSE Cor NSE N Period 

Maximum 

temperature (℃) 

HRLT 1.06  1.61  0.99  0.98  13973110  1961–2016 

ISIMP3a 2.47  3.47  0.96  0.91  13973110  1961–2016 
        

Minimum 

temperature (℃) 

HRLT 1.07  1.52  0.99  0.99  13971690  1961–2016 

ISIMP3a 2.63  3.60  0.96  0.92  13971690  1961–2016 
        

Precipitation 

(mm) 

HRLT 1.30  4.78  0.84  0.70  13971680  1961–2016 

ISIMP3a 2.75  8.10  0.48  0.14  13971680  1961–2016 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data. 
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Figure 1. Regions and spatial distribution of the meteorological stations in China. 

MLYR, NC, NEC, NWC, SC, and SWC are the Middle and Lower reaches of the 

Yangtze River, North China, Northeast China, Northwest China, South China, and 

Southwest China, respectively. Note: meteorological stations data were missing for 

Taiwan Province. 
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Figure 2. The process of spatial interpolation. The r1 to r6 are the residual error from 

each algorithm, respectively. The w1 to w6 are the weights of each algorithm, 

respectively. BRT, RF, NN, MAR, SVR, GAM and TPS are the boosted regression 

trees, random forests, neural networks, multivariate adaptive regression splines, 

support vector machines, the generalized additive model and thin-plate-smoothing 

splines, respectively. R2 is the coefficient of determination between the estimated and 

observed values. 
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Figure 3. Scatter density plots of daily maximum and minimum temperatures and 

precipitation between estimated and observed values at meteorological stations were 

used to test the HRLT dataset. Dashed line is a line with slope 1 and the red line is a 

fitting between estimated and observed values. R2 is the coefficient of determination 

between the estimated and observed values. *** asterisks indicate that the 

significance of the regression equation between the estimated and observed values 

was p < 0.001.  
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Figure 4. Spatial distribution of R2 and MAE for daily maximum temperature, 

minimum temperature, and precipitation between 1961 and 2019. The value before 

the ± is the R2 or MAE mean value and the value after the ± is the R2 or MAE 

standard deviation for all meteorological stations.  
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Figure 5. Comparisons of the density distribution between the estimated value in our 

dataset and the observed values from meteorological stations for daily maximum 

temperature, minimum temperature, and precipitation in the different regions from 

1961 to 2019.  
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Figure 6. Comparisons of the daily changes between the estimated and observed 

values for daily maximum temperature, minimum temperature, and precipitation from 

January 1, 1961 to December 31, 2019 over all meteorological stations.  
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Figure 7. Spatial distributions of annual average values for daily maximum and 

minimum temperatures, and the spatial distribution of annual precipitation in 1965, 

1980, 1990, and 2010. The ellipse regions are where the change is most visible.  
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Figure 8. Density distributions of annual average values for daily maximum and 

minimum temperatures, and annual precipitation across the different regions in 1965, 

1980, 1990, and 2010. The value in the illustrations is the mean value.   
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Figure 9. Scatter density plots of daily temperature and precipitation between the 

estimated and observed values at all meteorological stations (both training sets and 

testing sets) for the HRLT dataset and the CMFD dataset between 1979 and 2018. The 

dashed line is a line with slope 1 and the red line is a fitting between the estimated and 

observed values. R2 is the coefficient of determination between the estimated and 

observed values. *** asterisks indicate that the significance of the regression equation 

between the estimated and observed values was p < 0.001.   
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Figure 10. Scatter density plots of daily temperature and precipitation between the 

estimated and observed values from all meteorological stations (both training sets and 

testing sets) for our HRLT dataset and the CLDAS dataset between 2017 and 2019. 

Dashed line is a line with slope 1 and the red line is the fitting between the estimated 

and observed values. R2 is the coefficient of determination between the estimated and 

observed values. *** asterisks indicate that the significance of the regression equation 

between the estimated and observed values was p < 0.001.
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Figure 11. Scatter density plots of daily temperature and precipitation between the 

estimated and observed values from all meteorological stations (both training sets and 

testing sets) for our HRLT dataset and the ISIMIP3a dataset between 1961 and 2016. 

Dashed line is a line with slope 1 and the red line is the fitting between the estimated 

and observed values. R2 is the coefficient of determination between the estimated and 

observed values. *** asterisks indicate that the significance of the regression equation 

between the estimated and observed values was p < 0.001. 
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